Recall

Example Miles_Per_Gallon.sav

Y = Miles per gallon

X1 = Weight

X2 = Horsepower

Scatterplot

Scatter Plot of MPG by Weight

r(MPG,Weight)=-0.825

r(MPG,Horsepower)=-0.788

Model MPG \approx b0 + b1 * Weight

r(Weight, Horsepower)=+0.742, but partial correlation between Weight and Horsepower with MPG as control variable = +0.264

Scatterplot with regression line f(x) = 57.797 - 0.011 * Weight

Coefficients ^a								
				Standardized				
		Unstandardize	d Coefficients	Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	57,797	2,969		19,467	,000		
	Weight	-,011	,001	-,825	-10,107	,000		

a. Dependent Variable: MPG

Homoscedasticity, not heteroscedasticity

Predicted values: 57.797 - 0.011 * 2.250 = 33.9 miles = interpolated value,because $2.250 \in [x_{min}; x_{max}] = [1.755; 4.360]$ 57.797 - 0.011 * 4.500 = 10.0 miles = extrapolated value,because $4.500 \notin [1.755; 4.360]$

Leverage values (the four highest leverage values): LEV(car with maximum weight of 4.360)=0.13011 LEV(second heaviest car with 4.054 weight) =0.08519 LEV(third heaviest car with 3.940 weight)=0.07088 LEV(car with minimum weight of 1.755)=0.05076 Model MPG \approx b0 + b1 * Weight + b2*Horsepower R(MPG,Weight,Horepower)=0.866 R²(MPG,Weight,Horsepower)=0.739

Adjusted R Square

Ra²(Model MPG=b0+b1*Weight)=0.674

Ra²(Model MPG=b0+b1*Weight+b2*Horsepower)=0.739

Model Summary ^b							
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	,825ª	,680	,674	4,6681			

a. Predictors: (Constant), Weight

b. Dependent Variable: MPG

Model Summary ^b							
		Adjusted R Std. Error of					
Model	R	R Square	Square	Estimate			
1	,866ª	,749	,739	4,1766			

a. Predictors: (Constant), Horsepower, Weight

b. Dependent Variable: MPG

Multicollinearity

Model Weight = b0+b1*Horsepower with $R_1 = r$ (Weight, Horsepower)=+0.742

VIF= $\frac{1}{1-R_1^2} = \frac{1}{1-0.742^2} = 2.224 < 10$ no multicollinearity (only if VIF ≥ 10)

Model Horsepower = b0+b1*Weight with $R_2 = r$ (Horsepower, Weight)=+0.742

VIF =
$$\frac{1}{1-R_2^2} = \frac{1}{1-0.742^2} = 2.224 < 10$$

Predicted value

58.157 - 0.007*2.500 - 0.118*80 = 31.57843 miles

Coefficients											
Unstandardized		Standardized						Collinea	arity		
Coefficients		Coefficients			Correlations		Statistics				
			Std.				Zero-				
Μ	odel	В	Error	Beta	t	Sig.	order	Partial	Part	Tolerance	VIF
1	(Constant)	58,157	2,658		21,878	,000					
	Weight	-,007	,001	-,534	-4,903	,000	-,825	-,582	-	,450	2,224
									,358		
	Horsepower	-,118	,033	-,392	-3,600	,001	-,788	-,465	-	,450	2,224
									,263		

a. Dependent Variable: MPG

partial correlation r(MPG,Weight)=-0.582 with Horsepower=control partial correlation r(MPG,Horsepower)=-0.465 with Weight=control