Technology Arts Sciences Cologne Faculty of Economics, Business and Law Prof. Dr. Arrenberg Room 221, Tel. 3914 jutta.arrenberg@th-koeln.de

Exercises Quantitative Methods

Worksheet: Goodness-of-fit Test

Exercise 3.1 (DAX_30.sav)

DAX 30 (Deutsche Aktien Xchange 30, former Deutscher Aktien-Index 30) is a stock market index consisting of the 30 major German companies trading on the Frankfurt Stock Exchange. It is computed daily between 09:00 and 17:30 Hours CET.

For the first time the index was listed on 30^{th} December in 1987 with the arbitrary index 1000. For the last years we get the following indices on December 31^{st} :

Year	Dax
1987	1 0 0 0
1988	1 328
1989	1 7 9 0
1990	1 398
1991	1578
1992	1 5 4 5
1993	2 2 6 7
1994	2107
1995	2 2 5 4
1996	2889
1997	4 2 5 0
1998	5 0 0 2
1999	6958
2000	6434
2001	5 1 6 0
2002	2893
2003	3965
2004	4 2 5 6
2005	5408
2006	6597
2007	8067
2008	4810
2009	5957
2010	6914
2011	5898
2012	7612
2013	9552
2014	9806

Year	Dax
2015	10743
2016	11481
2017	12918
2018	10559
2019	13249
2020	13719

Source: Die Süddeutsche Zeitung

In business financing we assume Normal distribution of the logarithm of the factors; i.e. $\ln \frac{DAX_{Year}}{DAX_{Prior Year}} \sim NV$. Check this assumption for the last ten factors $\frac{Dax_{2011}}{Dax_{2010}}, \ldots, \frac{Dax_{2020}}{Dax_{2019}}$ with the Shapiro-Wilk Test.

	1		Statistic	Std Error
			Statistic	Stu. Entor
LN_Faktor	Mean		,0685	,0
	4895% Confidence Interval	Lower Bound	-,0422	
	for Mean	Upper Bound	$,\!1793$	
	5% Trimmed Mean		,0732	
	Median		,0788	
	Variance		,024	
	Std. Deviation		,15479	
	Minimum		-,20	
	Maximum		,26	
	Range		$,\!46$	
	Interquartile Range		$,\!25$	
	Skewness		-0,637	$0,\!687$
	Kurtosis		-0,352	1,334

Descriptives

Tests of Normality

	Kolmog	-Smirnov ^a	Shapiro-Wilk			
	Statistic	df	Signifikanz	Statistic	df	Significance
ln_Faktor	0,192	10	0,200*	0,911	10	0,288

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

How to compute the factor with SPSS?

- 1. Put the values of the variable DAX30 in the second row of the next column. Denote the new column with "Variable1"
- 2. Click Transform \rightarrow Compute Variable
- 3. Target Variable = factor
- 4. Numeric Expression: DAX30/Variable1
- $5.~\rm{ok}$

How to compute Ln(factor) with SPSS?

- 1. Transform \rightarrow Compute Variable
- 2. Target Variable = name
- 3. Numeric Expression:Select "ln" of the Function group "Arithmetic"Numeric Expression = ln(factor)
- 4. ok

Purpose: Predict probabilities due to the Normal distribution

Problem: The values of a random sample from the standard Normal distribution are lying in the interval $(-\infty; +\infty)$. But the rate of change is an element of the interval $[-1; +\infty)$, because the greatest decrease is -100%. And the factor of change (factor=rate + 1) is an element of the interval $[0; +\infty)$, so Normal distribution is inappropriate for the rate as well for the factor.

Solving of the problem: We consider the random variable $X = \ln(factor)$, so the values of X are lying in the interval $(-\infty; +\infty)$. With the goodness-of-fit test we confirm Normal distribution of X based on the sample of the last seven factors $\frac{\operatorname{index}_{2012}}{\operatorname{index}_{2011}}, \frac{\operatorname{index}_{2013}}{\operatorname{index}_{2012}}, \ldots, \frac{\operatorname{index}_{2018}}{\operatorname{index}_{2017}}, \text{ i.e. } X \approx \mathsf{N}(\mu = 0.0832, \sigma = 0.15065)$

We invest $10\,000 \in$ in a German stock for one year.

- a) What is the probability of the event, that the loss in the next year does not exceed $1\,000 \in$?
- b) Value at risk? What minimum charge would we expect with probability 95% in the next year?

Solution

a) 2021: investment of 10 000 \in 2022: loss less than 1 000 \in factor=Value 2022/Value 2021= $\frac{9\,000}{10\,000} = 0.9$ $\ln(factor) = \ln(0.9) = -0.1054$

$$P(X > -0.1054) = 1 - P(X \le -0.1054) = 1 - \phi\left(\frac{-0.1054 - 0.0685}{0.15479}\right) = 1 - \phi\left(\frac{-0.1054 - 0.0685}{0.15479}\right) = 0.121 - 0.0007$$

 $1 - \phi(-1.123458) = 1 - 0.131 = 0.869 = 86.9\%$ With the probability of 86.9% the loss in the next year will not exceed $1\,000 \in$.

b)
$$0.05 = P(X \le x) = \phi\left(\frac{x - 0.0685}{0.15479}\right)$$

 $-1.6449 = \frac{x - 0.0685}{0.15479}$
 $x = 0.0685 - 1.6449 \cdot 0.15479 = -0.3231141 = \ln(factor)$
 $e^{-0.3231141} = factor = 0.724$
 $10\,000 \cdot 0.724 = 7\,240 \in$
 $10\,000 - 7\,240 = 2\,760 \in$
that is with probability of 95% the loss will not exceed $2\,760 \in$.

Technology Arts Sciences Cologne Faculty of Economics, Business and Law Prof. Dr. Arrenberg Room 221, Tel. 3914 jutta.arrenberg@th-koeln.de

Exercises Quantitative Methods

Worksheet: Goodness-of-fit Test

Exercise 3.2 (Berenson et al. page 268)

The data in the file *chicken.sav* contains the total fat, in grams per serving, for a sample of 20 chicken sandwiches from fast-food chains. The data are as follows:

7	8	4	5	16	20	20	24	19	30
23	30	25	19	29	29	30	30	40	56

Please decide whether the data appear to be approximately normally distributed by running a test.

Exercise 3.3 (Berenson et al. page 268)

The following data, stored in the file *electricity.sav*, represents the electricity costs in dollars during July 2007 for a random sample of 50 two-bedroom apartments in a large city:

96	171	202	178	147	102	153	197	127	82
157	185	90	116	172	111	148	213	130	165
141	149	206	175	123	128	144	168	109	167
95	163	150	154	130	143	187	166	139	149
108	119	183	151	114	135	191	137	129	158

Decide whether the data appear to be approximately normally distributed by running a test. Solution exercise 3.2 X=total fat of a chicken sandwich n = 20 chicken sandwiches p-value Lilliefors test = 0.053 i.e. normal distribution

p-value Shapiro-Wilk test= 0.150 i.e. normal distribution

Solution exercise 3.3 X=electricity costs in dollars for a two-bedroom apartment n = 50 apartments p-value Lilliefors test ≥ 0.2 i.e. normal distribution

p-value Shapiro-Wilk test= 0.941 i.e. normal distribution